
Bounded Complexity Languages

Martin Kolář

Abstract

This theoretical paradigm allows the deduction of complexity di-
rectly from code, rather than by analysis of all possible operations.

1 Introduction

Important problems in theoretical computer science, such as P vs NP ,
have been formulated and analysed with complexity bounds defined on
a Turing Machine. However, a Turing Machine can execute algorithms
of arbitrary upper bound complexity, and the complexity of arbitrary
programs cannot be predicted in general. This is known as the Halting
Problem.

This paper presents Bounded Complexity Languages, in which ev-
ery program halts. A constructive proof shows that any algorithm with
a given upper bound in a Turing Complete system can be transcom-
piled into a Bounded Complexity Language of the same upper bound
complexity.

Theorem 1.1 Any program with an upper bound complexity on a Tur-
ing Machine can be translated into a sequential program with counted
loops whose iterations are bounded by the same complexity.

Rather than the standard approach, which defines upper bound
complexity by the highest number of operations that the entire al-
gorithm performs for any input. Thus, any algorithm which cannot
be written in a Bounded Complexity Language of a given bound is
guaranteed to have a higher bound.

2 Proof Outline

A sequential programming language is constructed in such a way that it
allows only counted loops, and no recursion. A procedure demonstrates
that any program with a polynomial upper bound complexity can be
transcompiled into a Polynomial Bounded Complexity Language pro-
gram. The construction is shown with a polynomial upper bound, but
any other function can be used (logarithmic, linear, exponential, ...).

1



3 Language Definition

Define polynomial programming language as a sequential programming
language with variables, functions, and operations, such as C. However,
the following restrictions apply:

A no while loops

B functions are uniquely numbered N
C any function fa is only allowed to call lower-numbered functions

fb where a > b

D the number of iterations of for loops is bounded by a polynomial
of order q given the input problem size n

These properties assure that there is no recursion, and that any
program written in such a language has an upper bound O(nq)

Corollary 3.0.1 Every polynomial time algorithm on a Turing Ma-
chine can be written in a polynomial language.

And therefore:

Corollary 3.0.2 Every program of a polynomial programming lan-
guage halts.

4 Constructive Proof

This procedure converts any polynomial program in any Turing Com-
plete system into a program of a Polynomial Bounded Complexity
Language, without executing the program.

1 Convert into a sequential programming language with while loops
and function calls. This is possible by the definition of Turing
Completeness.

2 Map function calls in a graph G

3 Identify loops in graph G, copy the code, and convert each loop
into a while loop in a new function. Repeat this step until all
loops in G are eliminated. The simplest case is a function calling
itself. This is done for all possible circular function calls, without
analysing whether they are called an runtime.

4 Uniquely number all functions such that a function fa calls only
functions fb such that a > b

5 Convert all while loops with condition C into for loops which
iterate nq times, and break when the condition C is satisfied.

Since the resulting language is Turing Complete, any resulting pro-
gram can be transcompiled into a Turing Machine system.

2


